Dynamic Analysis and Response of
Linear Systems

PREVIEW

Now that we have developed procedures to formulate the equations of motion for MDF sys-
tems subjected to dynamic forces (Chapters 9 and 11), we are ready to present the solution
of these equations. In Part A of this chapter we show that the equations for a two-DOF sys-
tem without damping subjected to harmonic forces can be solved analytically. Then we use
these results to explain how a vibration absorber or tuned mass damper works to decrease
or eliminate unwanted vibration. This simultaneous solution of the coupled equations of
motion is not feasible in general, so in Part B we develop the classical modal analysis
procedure. The equations of motion are transformed to modal coordinates, leading to an
uncoupled set of modal equations; each modal equation is solved to determine the modal
contributions to the response, and these modal responses are combined to obtain the total
response. An understanding of the relative response contributions of the various modes
is developed in Part C with the objective of deciding the number of modes to include in
dynamic analysis. The chapter closes with Part D, which includes two analysis procedures
useful in special situations: static correction method and mode acceleration method.

PART A: TWO-DEGREE-OF-FREEDOM SYSTEMS

12.1 ANALYSIS OF TWO-DOF SYSTEMS WITHOUT DAMPING

Consider the two-DOF systems shown in Fig. 12.1.1 excited by a harmonic force p;(¢) =
Do sin wt applied to the mass m . For both systems the equations of motion are

mi 0 i/il kl +k2 —k2 Ui _ p() )
[0 mz]{ﬁz}+[ —k> kz]{uz}_{ 0 }Slnwt (12.1.1)
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Figure 12.1.1 Two-degree-of-freedom systems.

Observe that the equations are coupled through the stiffness matrix. One equation cannot
be solved independent of the other; that is, both equations must be solved simultaneously.
Because the system is undamped, the steady-state solution can be assumed as

ul(t) _ JUio .
{um } - {m } st

Substituting this into Eq. (12.1.1), we obtain
ki + ky — myw? —ky uo | _ ) Po
[ "k by —my@® | sy [ =] 0 (12.1.2)

-om{10] =[5

Premultiplying by [k — w’m]~! gives

Uio | _ 2 =1 Po _ 1 : 2 Po
{ } = [k — »’m| { 0 } e adj[k — w m]{ 0 } (12.1.3)

Uso

or

where det[-] and adj[-] denote the determinant and adjoint of the matrix[-], respectively.
The frequency equation [Eq. (10.2.6)]

det[k — w’m] = 0

can be solved for the natural frequencies w; and w; of the system. In terms of these
frequencies, this determinant can be expressed as

det[k — w’m] = mmy(w* — 0?}) (0> — w3) (12.1.4)
Thus, Eq. (12.1.3) becomes
Ulo 1 ky — myw? ky Po
= —5 12.1.5
{ U } det[k — w?m] |: ka ki + ko — m1w2:| { 0 ( )
or
po(kZ - m2w2) pokZ

Ulp = Uzp = (12.1.6)

mima(w? — 0?)(w? — w3) mims(w? — 0})(w? — w3)
Example 12.1

Plot the frequency-response curve for the system shown in Fig. 12.1.1 with m| = 2m, my =
m, k1 = 2k, and k = k subjected to harmonic force p, applied on mass m .
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Solution Substituting the given mass and stiffness values in Eq. (12.1.6) gives
polk —ma?) Pok

(@ — )@ — @) P 2R — D) (@R — D)

where w; = +/k/2m and w, = +/2k/m; these natural frequencies were obtained in

Example 10.4. For given system parameters, Eq. (a) provides solutions for the response
amplitudes u, and u5,. It is instructive to rewrite them as

Ulp =

(a)

Uo 1 - % (w/wl)z Uy 1

wis)o  [1 = (@/w)?][1 = (@/0)?]  (as)o  [1 = (@/@)*][1 = (w/w2)?]

(b)

In these equations the response amplitudes have been divided (1), = p,/2k and (ur5), =
Po/2k, the maximum values of the static displacements (a concept introduced in Sec-
tion 3.1), to obtain normalized or nondimensional responses that depend on frequency
ratios w/w; and w/w,, not separately on w, w;, and w;.
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Figure E12.1 shows the normalized response amplitudes u, and u,, plotted against
the frequency ratio w/w;. These frequency-response curves show two resonance condi-
tions at @ = w; and @ = w;y; at these exciting frequencies the steady-state response is
unbounded. At other exciting frequencies, the vibration is finite and could be calculated
from Eq. (b). Note that there is an exciting frequency where the vibration of the first
mass, where the exciting force is applied, is reduced to zero. This is the entire basis of the
dynamic vibration absorber or tuned mass damper discussed next.

12.2 VIBRATION ABSORBER OR TUNED MASS DAMPER

The vibration absorber is a mechanical device used to decrease or eliminate unwanted
vibration. The description tuned mass damper is often used in modern installation; this
modern name has the advantage of showing its relationship to other types of dampers. In
the brief presentation that follows, we restrict ourselves to the basic principle of a vibration
absorber without getting into the many important aspects of its practical design.

In its simplest form, a vibration absorber consists of one spring and a mass. Such an
absorber system is attached to a SDF system, as shown in Fig. 12.2.1a. The equations of
motion for the main mass m; and the absorber mass m, are the same as Eq. (12.1.1). For
harmonic force applied to the main mass we already have the solution given by Eq. (12.1.6).
Introducing the notation

. ki . mo
W] = | — W, w=— (12.2.1)
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Figure 12.2.1 (a) Vibration absorber attached to an SDF system; (b) response ampli-
tude versus exciting frequency (dashed curve indicates negative u1, or phase opposite to
excitation); u = 0.2 and 0] = .
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the available solution can be rewritten as

2
1 _ kS
w, = 22 (/) - (12.2.2a)

Gl (o3 /07)” = (/)] [1 = (@/3)°] = 1 (03 /07)

Po 1
“u L4 (@3/07) = (/)| |1 = (@/03)’] = 1 (@3/07)”

(12.2.2b)

At exciting frequency @ = w3, Eq. (12.2.2a) indicates that the motion of the main mass
m1 does not simply diminish, it ceases altogether. Figure 12.2.1b shows a plot of response
amplitude uy, ~ (u15)o, Where (u1s)o = po/ki, versus w; for this example, the mass
ratio u = 0.2 and w] = wj, the absorber being tuned to the natural frequency of the
main system. Because the system has two DOFs, two resonant frequencies exist, and
the response is unbounded at those frequencies. The operating frequency range where
U1, ~ (U15t)o < 11s shown.

The usefulness of the vibration absorber becomes obvious if we compare the
frequency-response function of Fig. 12.2.1b with the response of the main mass alone,
without the absorber mass. At w = o] the response amplitude of the main mass alone
is unbounded but is zero with the presence of the absorber mass. Thus, if the exciting
frequency w is close to the natural frequency wj of the main system, and operating restric-
tions make it impossible to vary either one, the vibration absorber can be used to reduce
the response amplitude of the main system to near zero.

What should be the size of the absorber mass? To answer this question, we use
Eq. (12.2.2b) to determine the motion of the absorber mass at w = w3:

Uz = Lo (12.2.3)
ko
The force acting on the absorber mass is
kaus, = w2m2u20 = —Po (12.2.4)

This implies that the absorber system exerts a force equal and opposite to the exciting force.
Thus, the size of the absorber stiffness and mass, k, and m,, depends on the allowable value
of uy,. There are other factors that affect the choice of the absorber mass. Obviously, a
large absorber mass presents a practical problem. At the same time the smaller the mass
ratio u, the narrower will be the operating frequency range of the absorber.

The preceding presentation indicates that a vibration absorber has its greatest appli-
cation to synchronous machinery, operating at nearly constant frequency, for it is tuned to
one particular frequency and is effective only over a narrow band of frequencies. However,
vibration absorbers are also used in situations where the excitation is not nearly harmonic.
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The dumbbell-shaped devices that hang from highest-voltage transmission lines are vibra-
tion absorbers used to mitigate the fatiguing effects of wind-induced vibration. Vibration
absorbers have also been used to reduce the wind-induced vibration of tall buildings when
the motions have reached annoying levels for the occupants. An example of this is the
59-story Citicorp Center in midtown Manhattan; completed in 1977, this building has a
820-kip block of concrete installed on the 59th floor in a movable platform connected to
the building by large hydraulic arms. When the building sways more than 1 foot a second,
the computer directs the arms to move the block in the other direction. This action reduces
such oscillation by 40%, considerably easing the discomfort of the building’s occupants
during high winds.

PART B: MODAL ANALYSIS

12.3 MODAL EQUATIONS FOR UNDAMPED SYSTEMS

The equations of motion for a linear MDF system without damping were derived in Chap-
ter 9 and are repeated here:

mii + ku = p(t) (12.3.1)

The simultaneous solution of these coupled equations of motion that we have illustrated
in Section 12.1 for a two-DOF system subjected to harmonic excitation is not efficient for
systems with more DOFs, nor is it feasible for systems excited by other types of forces.
Consequently, it is advantageous to transform these equations to modal coordinates, as we
shall see next.

As mentioned in Section 10.7, the displacement vector u of an MDF system can be
expanded in terms of modal contributions. Thus, the dynamic response of a system can be
expressed as

N
u(n) =) ¢, (1) = Bq1) (1232)

r=1

Using this equation, the coupled equations (12.3.1) in u; () can be transformed to a set
of uncoupled equations with modal coordinates g, (¢) as the unknowns. Substituting Eq.
(12.3.2) in Eq. (12.3.1) gives

N

N
> maG )+ Y Kerg(t) =pr)
r=1

r=1

Premultiplying each term in this equation by ¢! gives

N N
> ormeyi () + ) ik, (1) = Gl p()
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